Exercise 52

Find an equation of the tangent line to the curve at the given point.

$$
\begin{equation*}
y=\sqrt{1+x^{3}} \tag{2,3}
\end{equation*}
$$

Solution

A point on the tangent line is known, so all that's needed is its slope. Take a derivative of the given function

$$
y^{\prime}=\frac{d}{d x} \sqrt{1+x^{3}}=\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(1+x^{3}\right)=\frac{1}{2}\left(1+x^{3}\right)^{-1 / 2} \cdot\left(3 x^{2}\right)=\frac{3 x^{2}}{2 \sqrt{1+x^{3}}}
$$

and evaluate it at $x=2$.

$$
y^{\prime}(2)=\frac{3(2)^{2}}{2 \sqrt{1+(2)^{3}}}=2
$$

Therefore, the equation of the tangent line to $y=\sqrt{1+x^{3}}$ at $(2,3)$ is

$$
y-3=2(x-2)
$$

Below is a graph showing the function and the tangent line.

